KIST 송경미 박사팀, 뉴로모픽 컴퓨팅을 위한 차세대 인공지능 반도체 기술 개발
KIST 송경미 박사팀, 뉴로모픽 컴퓨팅을 위한 차세대 인공지능 반도체 기술 개발
  • 최광민 기자
  • 승인 2020.03.29 12:00
  • 댓글 0
이 기사를 공유합니다

스커미온 기반의 인공 시냅스 소자를 세계 최초로 구현한 연구 결과이며, 인간의 뇌를 가장 밀접하게 모사한 것으로 뉴로모픽 소자를 새롭게 제시하는 것으로 시사하는 바가 크다

최근 글로벌 IT기업들과 연구기관은 고성능 컴퓨팅, 서버 또는 엣지 애플리케이션 등에서 연산능력은 기하급수적으로 늘어남에 따라 심층학습과 추론에 특화된 새로운 인공지능(AI) 칩 개발에 무한 경쟁을 벌이고 있다. AI 애플리케이션을 위해 초당 수백 테라(Tops)의 작업을 수행할 수 있는 칩을 기술적으로 제조하는 것은 가능하지만, 원하는 컴퓨팅 능력은 여전히 기대치를 밑돌고 있다.

이런 가운데 인간의 뇌를 모사한 인공지능 컴퓨팅 칩인 뉴로모픽(Neuromorphic) 칩은 기존의 반도체 칩이 갖는 전력 확보 문제를 해결할 수 있고 데이터 처리 과정을 통합할 수 있어 차세대 기술로 주목받고 있다.

먼저, 신경망소자를 구현하기 위해 기존 트렌지스터를 사용하여 다양한 방법이 시도 되고 있지만, 아직 뚜렷한 해결책이 밝혀진 바가 없다. 그러나 기존 컴퓨팅 방식으로 AI, 슈퍼컴퓨터 등에 사용되는 데이터를 처리할 때 생기는 막대한 양의 전력 소모로 인해 효율적인 뉴로모픽 소자의 개발은 매우 절실한 이슈로 떠오르고 있다.

차세대반도체연구소 송경미 박사(사진:KIST)
KIST 차세대반도체연구소 송경미 박사(사진:KIST)

한국과학기술연구원(KIST, 원장 직무대행 윤석진) 차세대반도체연구소 송경미 박사, 주현수 박사, 장준연 소장 그리고 우성훈 박사(현 IBM) 공동연구팀은 소용돌이 모양의 나노 스핀 구조체인 ‘스커미온(Skyrmion)을’ 이용하여 차세대 저전력 뉴로모픽 컴퓨팅 소자의 핵심 기술을 개발한 것이다.

‘스커미온’은 소용돌이 모양으로 배열된 스핀 구조체로 특유의 구조적 안정성, 나노미터 수준의 작은 크기 그리고 생성 및 개수 조절이 용이한 장점을 가져 메모리, 논리소자, 통신 소자 등 차세대 전자소자에 적용하기에 매우 유용하다.

더욱이 개개의 스커미온은 각각 고유한 전기 저항을 가져, 스커미온 개수에 따른 저항 변화를 아날로그적으로 조절하고 측정 할 수 있다. 이런 우수한 특성으로 인해 스커미온 기반의 인공 시냅스(Synaptic) 소자를 개발에 대한 관심이 높았으나, 스커미온을 전기적으로 제어하는 기술적 어려움으로 인해 현재까지 이론적으로만 예측되었다.

(좌) 페리 자성체(강자성체와 반강자성체의 중간 형태) 에서 형성되는 스커미온의 모식도와 (우) 뇌신경계의 신호 전달 모방을 위한 스커미온 기반의 시냅스 모식도
(좌) 페리 자성체(강자성체와 반강자성체의 중간 형태) 에서 형성되는 스커미온의 모식도와 (우) 뇌신경계의 신호 전달 모방을 위한 스커미온 기반의 시냅스 모식도

KIST 연구진은 신경전달 물질과 동일한 원리로 스커미온의 수를 조절함으로써 시냅스 가중치를 변화시킬 수 있음에 착안하였다. 그동안 개념적으로만 제안되었던 스커미온 전자소자를 전기적으로 제어하는 방법을 찾아냈으며 이를 기반한 시냅스 소자를 최초로 제작한 것으로 기존 시냅스 소자들에 비해 낮은 전압으로도 동작하면서도 높은 내구성을 갖는다.

연구진은 이 인공 시냅스 소자를 이용하여 손글씨 숫자 패턴(MNIST) 인식 학습을 진행하였을 때, 90%의 높은 인식률을 증명했다. 기존 인공 시냅스 소자는 이와 유사한 수준의 인식률을 얻기 위해 수십만 번의 반복 학습이 필요했으나, 스커미온 기반 인공 시냅스 소자는 15,000회 학습만으로 달성 가능하여 인식에 필요한 소자의 전력소모를 10배 이상 감소하였다.

(좌) 뉴런과 뉴런 사이의 연결강도 (시냅스 가중치)를 스커미온 기반 인공 시냅스로 구현한 모식도. (우) 28 ×28 픽셀로 표현되는 손글씨 패턴 인식 학습을 위한 인공 신경망
(좌) 뉴런과 뉴런 사이의 연결강도 (시냅스 가중치)를 스커미온 기반 인공 시냅스로 구현한 모식도. (우) 28 ×28 픽셀로 표현되는 손글씨 패턴 인식 학습을 위한 인공 신경망

KIST 송경미 박사는 “기존에 이론으로만 제시되었던 스커미온 기반의 인공 시냅스 소자를 세계 최초로 구현한 연구 결과이며, 전기적으로 제어되는 스커미온의 개수에 따라 시냅스 가중치를 제어함으로써 신경전달물질의 양으로써 시냅스 가중치를 조절하는 인간의 뇌를 가장 밀접하게 모방하였다.”라고 말했다. 또한 KIST 주현수 박사는 “본 연구에서 ‘스커미온’을 활용한 새로운 접근법은 차세대 물질이나 새로운 소자 기반의 뉴로모픽 소자를 새롭게 제시하는 것으로 이 분야 연구에 새로운 방법을 제시한 것으로 시사하는 바가 크다”라고 밝혔다.

한편, 이번 연구는 기존 이론으로만 제시되었던 스커미온 기반의 뉴로모픽 소자가 실제 가능하다는 것을 보여주는 중요한 실험 결과이다.

이 연구 결과를 통해 스커미온 기반의 뉴로모픽 소자 개발 연구 분야를 선도함과 동시에, 실제 차세대 초저전력 뉴로모픽 소자의 개발을 앞당기는데 크게 기여할 것으로 보인다. 연구결과는 세계적인 학술지 네이처 일렉트로닉스(Nature Electronics)에 '뉴로모픽 컴퓨팅을 위한 스커미온 기반 인공 시냅스(Skyrmion-based artificial synapse for neuromorphic computing. 첨부)'이란 제목으로 지난 16일 게재되었다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.