신경세포와 같은 섬유형태를 가지면서 시냅스 네트워크 구현 가능한 소자... 유연한 특성을 바탕으로 AI 반도체소자의 웨어러블, 로보틱스 등에 활용

임정아 박사는 “개발된 인공신경섬유 소자는 실제 뇌신경망과 유사한 대규모, 저전력(~2pJ/신호), 고신뢰성 인공신경망을 실현할 수 있는 원천기술이다.”라고 밝혔으며, ”인공신경섬유소자의 유연한 특성을 바탕으로 인공지능 반도체소자의 웨어러블, 로보틱스 등의 활용으로 이어질 수 있는 연구결과”라고 전망했다.
임정아 박사는 “개발된 인공신경섬유 소자는 실제 뇌신경망과 유사한 대규모, 저전력(~2pJ/신호), 고신뢰성 인공신경망을 실현할 수 있는 원천기술이다.”라고 밝혔으며, ”인공신경섬유소자의 유연한 특성을 바탕으로 인공지능 반도체소자의 웨어러블, 로보틱스 등의 활용으로 이어질 수 있는 연구결과”라고 전망했다.

인공지능(AI) 기술이 발전하면서 컴퓨터가 처리해야 할 데이터의 양도 기하급수적으로 늘어나고 있다.

기존의 연산방식은 데이터를 순차적으로 처리하기 때문에 방대한 양을 처리하기 위해서는 많은 시간과 막대한 전력이 소모된다는 문제점을 안고 있다.

이를 극복하기 위해서는 새로운 연산 패러다임으로의 전환이 필요한데, 많은 연구자가 생물의 뇌 작동방식과 구조를 모방해 적은 에너지로도 많은 양의 연산이 가능한 저전력 뉴로모픽 컴퓨팅(Neuromorphic Computing)과 이를 위한 하드웨어 개발을 위해 노력하고 있다.

이런 가운데, 한국과학기술연구원(KIST, 원장 윤석진)은 광전소재연구단 임정아, 주현수 박사 연구팀이 뉴런과 유사한 형태와 기능을 갖고, 뇌의 신경세포망과 같은 기능을 구현할 수 있는 인공신경섬유 소자 개발에 성공했다.

왼쪽은 생물의 신경세포 구조, 오른쪽은 본 연구진이 개발한 꼬아진 전극을 기반으로 하는 인공신경섬유소자의 구조를 비교 설명한 그림. 인공신경섬유소자 그림의 아래는 실제 소자의 사진.
왼쪽은 생물의 신경세포 구조, 오른쪽은 본 연구진이 개발한 꼬아진 전극을 기반으로 하는 인공신경섬유소자의 구조를 비교 설명한 그림. 인공신경섬유소자 그림의 아래는 실제 소자의 사진.

컴퓨터 연산을 뇌와 같은 방식으로 처리하기 위해 뇌의 뉴런 및 시냅스의 역할을 할 수 있는 소자에 대한 연구가 필요한데, 기존의 연구들이 뉴런 혹은 시냅스 동작에 대한 소자를 각각 개발해오던 것과 달리 KIST 연구진은 두 가지 동작 특성을 모두 갖는 개별 소자인 인공신경섬유를 개발했다.

이 소자들을 연결하면 간단히 신경망을 보다 십게 구현할 수 있게 된다.

왼쪽은 뉴런의 신호처리 방법, 오른쪽은 본 연구진이 개발한 인공신경섬유소자에 신호가 들어왔을 때 뉴런 동작 특성을 보이는 그래프.
왼쪽은 뉴런의 신호처리 방법, 오른쪽은 본 연구진이 개발한 인공신경섬유소자에 신호가 들어왔을 때 뉴런 동작 특성을 보이는 그래프.

뇌의 신경세포는 끝이 여러 가닥으로 갈라져 여러 자극을 한 번에 받아들일 수 있는 섬유 구조를 가지며 전기자극에 의한 이온의 이동으로 신호전달이 이루어지는데, 연구진은 이와 동일한 구조로 2019년 개발한 섬유형 트랜지스터 소자를 활용해 인공신경섬유로 발전시켰다.

섬유형 트랜지스터의 전극으로 들어오는 전기적 자극에 따라 반도체 소재와 절연막에 존재하는 이온 사이에 산화환원 반응이 일어나도록 설계해 시냅스처럼 전기신호의 강도를 기억하여 전달할 수 있는 메모리 트랜지스터를 개발한 것이다.

왼쪽은 인공신경섬유의 게이트로 구분된 다중 시냅스의 구조를 보여주는 그림. 오른쪽 그래프는 각각의 시냅스를 게이트를 이용하여 특성을 변화시킬 수 있고, 구별되어 작동되는 것을 보임으로써 인공신경섬유의 독립적으로 구분된 시냅스 특성을 보이는 그래프. 마지막 그래프는 시냅스 특성과 뉴런의 특성을 통합하여 동작하는 인공신경섬유소자의 특성을 보여주는 그래프.
왼쪽은 인공신경섬유의 게이트로 구분된 다중 시냅스의 구조를 보여주는 그림. 오른쪽 그래프는 각각의 시냅스를 게이트를 이용하여 특성을 변화시킬 수 있고, 구별되어 작동되는 것을 보임으로써 인공신경섬유의 독립적으로 구분된 시냅스 특성을 보이는 그래프. 마지막 그래프는 시냅스 특성과 뉴런의 특성을 통합하여 동작하는 인공신경섬유소자의 특성을 보여주는 그래프.

개발된 인공신경섬유는 여러 개의 전극에서 다발적으로 들어오는 전기적 신호가 자연스럽게 하나의 소자에서 통합되는 뉴런과 동일한 특징을 보여, 이는 생물의 신경세포 동작 특성과 매우 유사한 것이다.

연구팀은 개발한 인공신경섬유를 엮어 100개 시냅스로 구성된 인공신경망을 제작, 안정적인 소자 특성을 확인하였다. 제작된 인공신경섬유 소자들을 이용하여 음성인식 학습을 진행 시킨 결과 88.9%의 인식률을 달성했다.

왼쪽은 본 연구에서 개발된 인공신경섬유소자에서의 음성인식 (TI-46) 학습 및 동작 과정 그림, 오른쪽은 실제 음성인식
왼쪽은 본 연구에서 개발된 인공신경섬유소자에서의 음성인식 (TI-46) 학습 및 동작 과정 그림, 오른쪽은 실제 음성인식

연구개발을 주도한 KIST 주현수, 임정아 박사는 “개발된 인공신경섬유 소자는 실제 뇌신경망과 유사한 대규모, 저전력(~2pJ/신호), 고신뢰성 인공신경망을 실현할 수 있는 원천기술이다.”라고 밝혔으며, ”인공신경섬유소자의 유연한 특성을 바탕으로 인공지능 반도체소자의 웨어러블, 로보틱스 등의 활용으로 이어질 수 있는 연구결과”라고 전망했다.

한편, 김수진, 정재승 KIST 학생연구원이 제1저자로 이번 연구 성과는 재료과학 분야 글로벌 최고의 학술지 어드밴스드 머터리얼스(Advanced Materials)에 '시공간 반복 학습을위한 향상된 메모리 순환 내구성을 갖춘 수지상 네트워크 구현 가능한 유기 신경 섬유 트랜지스터(Dendritic Network Implementable Organic Neurofiber Transistors with Enhanced Memory Cyclic Endurance for Spatiotemporal Iterative Learning-첨부)제목으로 지난달 24일 게재됐다.

 

 

저작권자 © 인공지능신문 무단전재 및 재배포 금지